Determinanti della miocardite indotta da vaccino mRNA

SAGE Journals – Fonte: https://journals.sagepub.com/doi/10.1177/20420986241226566#
Pubblicato per la prima volta online il 27 gennaio 2024

Determinanti della miocardite indotta da vaccino COVID-19

Jessica Rose, Nicolas Hulscher https://orcid.org/0009-0008-0677-7386 nichulscher@gmail.com e Peter A. McCullough
https://doi.org/10.1177/20420986241226566

Sommario

Sfondo:
In seguito al lancio delle iniezioni di Pfizer-BioNTech BNT162b2, Moderna mRNA-1273 e Janssen Ad26.COV2.S per la malattia da coronavirus 2019 (COVID-19) negli Stati Uniti, milioni di individui hanno riportato eventi avversi (EA) utilizzando il sistema di segnalazione degli eventi avversi dei vaccini (VAERS). L’obiettivo di questa analisi è descrivere i dati sulla miocardite nel VAERS e nei vaccini COVID-19 come potenziali determinanti della miocardite.

Metodi:
Abbiamo utilizzato i dati VAERS per esaminare la frequenza delle segnalazioni di miocardite dall’inizio della campagna di vaccinazione di massa e li abbiamo confrontati con i valori storici dei dati VAERS e sulla somministrazione del vaccino COVID-19 dal database Our World in Data. Abbiamo esaminato le segnalazioni di miocardite nel VAERS nel contesto di sesso, età e dose. L’analisi statistica è stata effettuata utilizzando il test t di Student per determinare differenze statisticamente significative tra le età degli eventi avversi (EA) di miocardite e il test chi-quadrato per determinare le relazioni tra variabili categoriali con significatività statistica.

Risultati:
Abbiamo riscontrato che il numero di segnalazioni di miocardite nel VAERS dopo la vaccinazione COVID-19 nel 2021 era 223 volte superiore alla media di tutti i vaccini combinati negli ultimi 30 anni. Ciò ha rappresentato un aumento del 2500% nel numero assoluto di segnalazioni nel primo anno della campagna se si confrontano i valori storici prima del 2021. I dati demografici hanno rivelato che la miocardite si è verificata soprattutto nei giovani (50%) e nei maschi (69%). Un totale del 76% dei casi ha comportato cure di emergenza e ricovero ospedaliero. Sul totale delle segnalazioni di miocardite, 92 individui sono morti (3%). La miocardite era più probabile dopo la dose 2 (p < 0,00001) e gli individui di età inferiore a 30 anni avevano maggiori probabilità di contrarre la miocardite rispetto agli individui di età superiore a 30 (p < 0,00001).

Conclusione:
La vaccinazione contro il COVID-19 è fortemente associata a un grave segnale avverso alla sicurezza della miocardite, in particolare nei bambini e nei giovani adulti, con conseguente ospedalizzazione e morte. Ulteriori indagini sui meccanismi alla base della miocardite indotta dal vaccino COVID-19 sono indispensabili per creare strategie di mitigazione efficaci e garantire la sicurezza dei programmi di vaccinazione COVID-19 tra le popolazioni.

(omissis)

Referenze

1. Cooper LT Jr. Myocarditis. N Engl J Med 2009; 9: 1526–1538.
2. Camm AJ, Lüscher TF, Serruys PW (eds). The ESC textbook of cardiovascular medicine. 3rd ed. The European Society of Cardiology Series. Oxford: Oxford University Press, 2018.
3. Libby P, Swirski FK, Nahrendorf M. The myocardium: more than myocytes. J Am Coll Cardiol 2019; 74: 3136–3138.
4. Banerjee I, Fuseler JW, Price RL, et al. Determination of cell types and numbers during cardiac development in the neonatal and adult rat and mouse. Am J Physiol Heart Circ Physiol 2007; 293: 1883–1891.
5. Weinhaus AJ, Roberts KP. Anatomy of the human heart. In: Iaizzo P (ed.) Handbook of cardiac anatomy, physiology and devices. Totowa, NJ: Humana Press, 2009, pp. 51–79.
6. Avolio E, Carrabba M, Milligan R, et al. The SARS-CoV-2 spike protein disrupts human cardiac pericytes function through CD147 receptor-mediated signalling: a potential non-infective mechanism of COVID-19 microvascular disease. Clin Sci (Lond) 2021; 22: 2667–2689.
7. Harris KM, Mackey-Bojack S, Bennett M, et al. Sudden unexpected death due to myocarditis in young people, including athletes. Am J Cardiol 2021; 15: 131134.
8. Markwerth P, Bajanowski T, Tzimas I, et al. Sudden cardiac death-update. Int J Legal Med 2021; 135: 483–495.
9. Sagar S, Liu PP, Cooper LT Jr. Myocarditis. Lancet 2012; 25: 738–747.
10. Ammirati E, Frigerio M, Adler ED, et al. Management of acute myocarditis and chronic inflammatory cardiomyopathy: an expert consensus document. Circ Heart Fail 2020; 13: e007405.
11. Peretto G, Sala S, Rizzo S, et al. Arrhythmias in myocarditis: state of the art. Heart Rhythm 2019; 16: 793–801.
12. Kim J, Cho MJ. Acute myocarditis in children: a 10-year nationwide study (2007–2016) based on the Health Insurance Review and Assessment Service Database in Korea. Korean Circ J 2020; 50: 1013–1022.
13. Arola A, Pikkarainen E, Sipilä JO, et al. Occurrence and features of childhood myocarditis: a nationwide study in Finland. J Am Heart Assoc 2017; 18: e005306.
14. Fairweather D, Beetler DJ, Musigk N, et al. Sex and gender differences in myocarditis and dilated cardiomyopathy: an update. Front Cardiovasc Med 2023; 2: 1129348.
15. Engler RJ, Nelson MR, Collins LC Jr, et al. A prospective study of the incidence of myocarditis/pericarditis and new onset cardiac symptoms following smallpox and influenza vaccination. PLoS One 2015; 20: e0118283.
16. Singer ME, Taub IB, Kaelber DC. Risk of myocarditis from COVID-19 infection in people under age 20: a population-based analysis. medRxiv [Preprint], 21 March 2022.
17. Daniels CJ, Rajpal S, Greenshields JT, et al.; for the Big Ten COVID-19 Cardiac Registry Investigators. Prevalence of clinical and subclinical myocarditis in competitive athletes with recent SARS-CoV-2 infection: results from the Big Ten COVID-19 Cardiac Registry. JAMA Cardiol 2021; 1: 1078–1087.
18. Siripanthong B, Nazarian S, Muser D, et al. Recognizing COVID-19-related myocarditis: the possible pathophysiology and proposed guideline for diagnosis and management. Heart Rhythm 2020; 17: 1463–1471.
19. Castiello T, Georgiopoulos G, Finocchiaro G, et al. COVID-19 and myocarditis: a systematic review and overview of current challenges. Heart Fail Rev. 2022; 27: 251–261.
20. Mele D, Flamigni F, Rapezzi C, et al. Myocarditis in COVID-19 patients: current problems. Intern Emerg Med 2021; 23: 1–7.
21. Liao YF, Tseng WC, Wang JK, et al. Management of cardiovascular symptoms after Pfizer-BioNTech COVID-19 vaccine in teenagers in the emergency department. J Formos Med Assoc 2023; 122: 699–706.
22. Albert E, Aurigemma G, Saucedo J, et al. Myocarditis following COVID-19 vaccination. Radiol Case Rep 2021; 16: 2142–2145.
23. Montgomery J, Ryan M, Engler R, et al. Myocarditis following immunization with mRNA COVID-19 vaccines in members of the US military. JAMA Cardiol 2021; 6: 1202–1206.
24. Martinez MW, Tucker AM, Bloom OJ, et al. Prevalence of inflammatory heart disease among professional athletes with prior COVID-19 infection who received systematic return-to-play cardiac screening. JAMA Cardiol 2021; 1: 745–752.
25. Puntmann VO, Carerj ML, Wieters I, et al. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19). JAMA Cardiol 2020; 1: 1265–1273.
26. Tersalvi G, Vicenzi M, Calabretta D, et al. Elevated troponin in patients with coronavirus disease 2019: possible mechanisms. J Card Fail 2020; 26: 470–475.
27. Nascimento JHP, Gomes BFO, Oliveira GMM. Cardiac troponin as a predictor of myocardial injury and mortality from COVID-19. Arq Bras Cardiol 2020; 115: 667–668.
28. Ucar FM, Ozturk C, Yılmaztepe MA. Evaluation of Tp-e interval, Tp-e/QT ratio and Tp-e/QTc ratio in patients with acute myocarditis. BMC Cardiovasc Disord 2019; 19: 232.
29. U.S. Department of Health and Human Services. Vaers Data Use Guide-HHS.gov [Internet]. Department of Health and Human Services, https://vaers.hhs.gov/docs/VAERSDataUseGuide_November2020.pdf (2020, accessed 24 August 2023).
30. Cook KM, Evans G. The national vaccine injury compensation program. Pediatrics 2011; 1: 74–77.
31. Lazarus R, Klompas M, Bernstein S. Electronic support for public health-vaccine adverse event reporting system (ESP: VAERS), Grant final report, Grant ID: R18 HS 017045, U.S. Department of Health and Human Services.
32. Miller ER, McNeil MM, Moro PL, et al. The reporting sensitivity of the vaccine adverse event reporting system (VAERS) for anaphylaxis and for Guillain–Barré syndrome. Vaccine 2020; 3: 7458–7463.
33. National Institute on Aging. NIA adverse event | serious adverse event guidelines [Internet], https://www.nia.nih.gov/sites/default/files/2018-09/nia-ae-and-sae-guidelines-2018.pdf (2018, accessed 24 August 2023).
34. Centers for Disease Control and Prevention. CDC Covid data tracker [Internet], https://covid.cdc.gov/covid-data-tracker/#vaccination-states-jurisdictions (2023, accessed 24 August 2023).
35. Padda IS, Parmar M. COVID (SARS-CoV-2) vaccine [Internet], Treasure Island, FL: StatPearls Publishing, https://www.ncbi.nlm.nih.gov/books/NBK567793/ (2023, accessed 24 August 2023).
36. Walsh EE, Frenck RW Jr, Falsey AR, et al. Safety and immunogenicity of two RNA-based Covid-19 vaccine candidates. N Engl J Med 2020; 17: 2439–2450.
37. Polack FP, Thomas SJ, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med 2020; 31: 2603–2615.
38. Lei Y, Zhang J, Schiavon CR, et al. SARS-CoV-2 spike protein impairs endothelial function via downregulation of ACE2. Circ Res 2020; 4: 2020–2012.
39. AAAS. Israel reports link between rare cases of heart inflammation and COVID-19 vaccination in young men [Internet], Science, https://www.sciencemag.org/news/2021/06/israel-reports-link-between-rare-cases-heart-inflammation-and-covid-19-vaccination (2021, accessed 6 June 2021).
40. Mansanguan S, Charunwatthana P, Piyaphanee W, et al. Cardiovascular manifestation of the BNT162b2 mRNA COVID-19 vaccine in adolescents. Trop Med Infect Dis 2022; 19: 196–110.
41. Buergin N, Lopez-Ayala P, Hirsiger JR, et al. Sex-specific differences in myocardial injury incidence after COVID-19 mRNA-1273 booster vaccination. Eur J Heart Fail 2023; 25: 1871–1881.
42. Hulscher N, Hodkinson R, Makis W, et al. Autopsy proven fatal COVID-19 vaccine-induced myocarditis. Preprints, 2023.
43. Bouchaala A, Nguadi J, Benhlima A, et al. Post-vaccine COVID-19 acute myocarditis: case reports and literature review. Pan Afr Med J 2023; 20: 192.
44. Das BB, Moskowitz WB, Taylor MB, et al. Myocarditis and pericarditis following mRNA COVID-19 vaccination: what do we know so far? Children (Basel) 2021; 18: 607.
45. U.S. Department of Health and Human Services. Vaccine adverse event reporting system (VAERS) [Internet], https://vaers.hhs.gov (2023, accessed 24 August 2023).
46. GitHub (owid/covid-19-data). Data on COVID-19 (coronavirus) by our world in data, https://github.com/owid/covid-19-data/tree/master/public/data (2023, accessed 12 August 2023).
47. McLachlan S, Osman M, Dube K, et al. Analysis of COVID-19 vaccine death reports from the vaccine adverse events reporting system (VAERS) database interim: results and analysis. R%es Gate 2021.
48. Rose J. Critical appraisal of VAERS pharmacovigilance: is the U.S. vaccine adverse events reporting system (VAERS) a functioning pharmacovigilance system? Sci Pub Health Pol Law 2021; 3: 100–129.
49. Ottani F, Galvani M, Nicolini FA, et al. Elevated cardiac troponin levels predict the risk of adverse outcome in patients with acute coronary syndromes. Am Heart J 2000; 140: 917–927.
50. Lella LK, Sales VL, Goldsmith Y, et al. Reduced right ventricular function predicts long-term cardiac re-hospitalization after cardiac surgery. PLoS One 2015; 21: e0132808.
51. Hage C, Michaëlsson E, Linde C, et al. Inflammatory biomarkers predict heart failure severity and prognosis in patients with heart failure with preserved ejection fraction: a holistic proteomic approach. Circ Cardiovasc Genet 2017; 10: e001633.
52. Masarone D, Limongelli G, Rubino M, et al. Management of arrhythmias in heart failure. J Cardiovasc Dev Dis 2017; 28: 3–10.
53. Australian Government Department of Health, Therapeutic Goods Administration. Nonclinical evaluation of BNT162b2 [mRNA] COVID-19 vaccine (COMIRNATY) [Internet], Australian Government Department of Health, Therapeutic Goods Administration. https://www.tga.gov.au/sites/default/files/foi-2389-06.pdf (2021, accessed 23 May 2023).
54. Nakagawa A, Nakamura N, Torii S, et al. Acute pulmonary hypertension due to microthrombus formation following COVID-19 vaccination: a case report. Eur Heart J Case Rep 2023; 26: 353.
55. Bekal S, Husari G, Okura M, et al. Thrombosis development after mRNA COVID-19 vaccine administration: a case series. Cureus 2023; 15: e41371.
56. Kim EJ, Yoo SJ. Pulmonary embolism after vaccination with the COVID-19 vaccine (Pfizer, BNT162b2): a case report. Vaccines (Basel) 2023; 7: 1075.
57. Castruita JAS, Schneider UV, Mollerup S, et al. SARS-CoV-2 spike mRNA vaccine sequences circulate in blood up to 28 days after COVID-19 vaccination. APMIS 2023; 131: 128–132.
58. Swank Z, Senussi Y, Manickas-Hill Z, et al. Persistent circulating severe acute respiratory syndrome coronavirus 2 spike is associated with post-acute coronavirus disease 2019 sequelae. Clin Infect Dis 2023; 76: e487–e490.
59. Yonker LM, Swank Z, Bartsch YC, et al. Circulating spike protein detected in post-COVID-19 mRNA vaccine myocarditis. Circulation 2023; 14: 867–876.
60. Baumeier C, Aleshcheva G, Harms D, et al. Intramyocardial inflammation after COVID-19 vaccination: an endomyocardial biopsy-proven case series. Int J Mol Sci 2022; 22: 6940.
61. United States Government Accountability Office. Operation warp speed-accelerated COVID-19 vaccine development status and efforts to address manufacturing challenges, https://www.gao.gov/assets/gao-21-319.pdf (2021, accessed 24 August 2023).
62. McPhillips HA, Davis RL, Marcuse EK, et al. The rotavirus vaccine’s withdrawal and physicians’ trust in vaccine safety mechanisms. Arch Pediatr Adolesc Med 2001; 155: 1051–1056.
63. Buonocore SM, van der Most RG. Narcolepsy and H1N1 influenza immunology a decade later: What have we learned? Front Immunol 2022; 12: 902840.
64. Centers for Disease Control and Prevention (CDC). Update: Guillain–Barré syndrome among recipients of Menactra meningococcal conjugate vaccine – United States, June 2005–September 2006. MMWR Morb Mortal Wkly Rep 2006; 20: 1120–1124.
65. Grzybowska-Chlebowczyk U, Kałużna-Czyż M, Kalita B, et al. Intussusception as a complication of rotavirus infection in children. Pediatr Polska 2015; 90: 464–469.
66. Pradhan SK, Dash M, Ray RK, et al. Childhood intussusception after introduction of indigenous rotavirus vaccine: hospital-based surveillance study from Odisha, India. Indian J Pediatr 2021; 88: 112–117.
67. Hernán MA, Jick SS, Olek MJ, et al. Recombinant hepatitis B vaccine and the risk of multiple sclerosis: a prospective study. Neurology 2004; 14: 838–842.
68. Centers for Disease Control and Prevention. Stay up to date with Covid-19 vaccines. https://www.cdc.gov/coronavirus/2019-ncov/vaccines/stay-up-to-date.html#:~:text=CDC%20recommends%20the%202023%E2%80%9 . . . . (2023, accessed 27 October 2023).
69. Ludvigsson JF. Systematic review of COVID-19 in children shows milder cases and a better prognosis than adults. Acta Paediatr 2020; 109: 1088–1095.
70. World Health Organization. Covid-19 vaccines advice. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/covid-19-vaccines/advice (2023, accessed 27 October 2023).
71. Bertran M, Amin-Chowdhury Z, Davies HG, et al. COVID-19 deaths in children and young people in England, March 2020 to December 2021: an active prospective national surveillance study. PLoS Med 2022; 8: e1004118.
72. McCullough PA, Kelly RJ, Ruocco G, et al. Pathophysiological basis and rationale for early outpatient treatment of SARS-CoV-2 (COVID-19) infection. Am J Med 2021; 134: 16–22.
73. McCullough PA, Alexander PE, Armstrong R, et al. Multifaceted highly targeted sequential multidrug treatment of early ambulatory high-risk SARS-CoV-2 infection (COVID-19). Rev Cardiovasc Med 2020; 30: 517–530.
74. Paterlini M. Covid-19: Sweden, Norway, and Finland suspend use of Moderna vaccine in young people ‘as a precaution’. BMJ 2021; 375: n2477.
75. Husby A, Hansen JV, Fosbøl E, et al. SARS-CoV-2 vaccination and myocarditis or myopericarditis: population based cohort study. BMJ 2021; 375: e068665.
76. Fairweather D, Beetler DJ, Di Florio DN, et al. COVID-19, myocarditis and pericarditis. Circ Res 2023; 132: 1302–1319.
77. Parry PI, Lefringhausen A, Turni C, et al. ‘Spikeopathy’: COVID-19 spike protein is pathogenic, from both virus and vaccine mRNA. Biomedicines 2023; 11: 2287.
78. Fraiman J, Erviti J, Jones M, et al. Serious adverse events of special interest following mRNA COVID-19 vaccination in randomized trials in adults. Vaccine 2022; 40: 5798–5805.
79. Yu CK, Tsao S, Ng CW, et al. Cardiovascular assessment up to one year after COVID-19 vaccine-associated myocarditis. Circulation 2023; 148: 436–439.
80. U.S. Food and Drug Administration. Coronavirus (COVID-19) update: June 25, 2021, https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-june-25-2021 (2021, accessed 27 October 2023).

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

Logo Fronte di Liberazione Nazionale con Nicola Franzoni

Partito Politico Registrato: Fronte di Liberazione Nazionale | Sigla Registrata : FLN | Simbolo Registrato

sede legale: viale Colombo 10 Marina di Carrara

partito@frontediliberazionenazionale.it


©2022 Fronte di Liberazione Nazionale